Stochastic homogenization of nonconvex integral functionals
نویسندگان
چکیده
— Almost sure epiconvergenee of a séquence of random intégral functionals is studied without convexity assumption. We give aproofby using an Ergodic theorem and recover and make précise the result of S. Muller in the periodic case. Finally, we study the asymptotic behaviour of corresponding random primai and dual problems in the convex case. Resumé. — Le problème étudié dans cet article concerne Vépiconvergence presque sûre d'une suite de fonctionnelles intégrales aléatoires non nécessairement convexes. On présente une méthode directe utilisant un théorème ergodique, retrouvant ainsi et précisant un résultat de S. Muller obtenu dans le cas périodique. Finallement, dans le cas de fonctionnelles convexes, on étudie la convergence presque sûre des problèmes aléatoires primaux et duaux associés.
منابع مشابه
Homogenization of Periodic Nonconvex Integral Functionals in Terms of Young Measures
Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ-limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one....
متن کاملA Two Scale Γ-convergence Approach for Random Non-convex Homogenization
We propose an abstract framework for the homogenization of random functionals which may contain non-convex terms, based on a two-scale Γ-convergence approach and a definition of Young measures on micropatterns which encodes the profiles of the oscillating functions and of functionals. Our abstract result is a lower bound for such energies in terms of a cell problem (on large expanding cells) an...
متن کاملOn the convergence of stochastic integrals driven by processes converging on account of a homogenization property
We study the limit of functionals of stochastic processes for which an homogenization result holds. All these functionals involve stochastic integrals. Among them, we consider more particularly the Lévy area and those giving the solutions of some SDEs. The main question is to know whether or not the limit of the stochastic integrals is equal to the stochastic integral of the limit of each of it...
متن کاملMultiscale nonconvex relaxation and application to thin films
Γ-convergence techniques are used to give a characterization of the behavior of a family of heterogeneous multiple scale integral functionals. Periodicity, standard growth conditions and nonconvexity are assumed whereas a stronger uniform continuity with respect to the macroscopic variable, normally required in the existing literature, is avoided. An application to dimension reduction problems ...
متن کاملA Derivation Formula for Convex Integral Functionals Deened on Bv ()
We show that convex lower semicontinuous functionals deened on functions of bounded variation are characterized by their minima, and we prove a derivation formula which allows an integral representation of such functionals. Applications to relaxation and homogenization are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017